metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Miłosz Siczek* and Tadeusz Lis

Faculty of Chemistry, University of Wrocław, 14 Joliot-Curie St, 50-383 Wrocław, Poland

Correspondence e-mail: majlosz@poczta.fm

Key indicators

Single-crystal X-ray study T = 100 KMean $\sigma(\text{C}-\text{C}) = 0.002 \text{ Å}$ Disorder in main residue R factor = 0.018 wR factor = 0.039 Data-to-parameter ratio = 35.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Redetermination of tetraphenylarsonium trans-aquatetrachlorooxorhenate(V) at 100 K

The crystal structure of the title compound, $(C_{24}H_{20}As)$ [Re-Cl₄O(H₂O)], has been re-examined at 100 K. The complex contains distorted octahedral [ReOCl₄(H₂O)]⁻ anions, with the Re atom and disordered aqua ligand located on a fourfold axis, and [Ph₄As]⁺ cations with the As atom located on a fourfold inversion axis. In the anion, the terminal Re=O bond, 1.662 (2) Å, is *trans* to the aqua ligand and the Re– (OH₂) and Re–Cl distances are 2.325 (3) and 2.3479 (5) Å, respectively.

Comment

Initial studies of the structure of $[Ph_4As][ReOCl_4(H_2O)]$, (I), were made by Lis & Jeżowska-Trzebiatowska (1977) and reinvestigated by Müller (1984). Müller proved, using the original data of Lis & Jeżowska-Trzebiatowska (1977), that this complex contains a water molecule. We now report an independent re-investigation of the title complex, (I), using data measured at 100 K.

The title complex (Fig. 1 and Table 1) comprises an $[\text{ReOCl}_4(\text{OH}_2)]^-$ anion and a $[\text{Ph}_4\text{As}]^+$ cation. In the anion, the Re, oxo O and water O atoms lie on a common fourfold rotation axis of symmetry, while in the cation the As atom is located on a fourfold inversion centre. In this model, the water H atoms take two positions, indicating disorder. The water molecule is not involved in any hydrogen bonds, an observation confirmed by its IR spectrum which shows a single sharp band at 933 cm⁻¹.

The Re atom has a distorted octahedral geometry with four Cl atoms in equatorial positions and with the water molecule and the oxo O atom occupying the axial positions. The Re atom deviates from the equatorial plane towards the oxo O atom by 0.415 (1) Å. The distortion from a regular octahedral geometry can also be noted in the value of the Cl-Re-O1 angle, *viz.* 100.18 (1)°. The Re-O1 bond distance is comparable with values observed in other oxorhenium complexes (Lis, 1979; Sergienko *et al.*, 1991).

Received 29 November 2005 Accepted 16 January 2006

© 2006 International Union of Crystallography All rights reserved The geometry of the $[Ph_4As]^+$ cation shows no significant difference compared to other compounds containing this species (Linden & James, 2002; Dean *et al.*, 2003).

Experimental

To obtain the title complex, the original procedure described by Lis & Jeżowska-Trzebiatowska (1977) was followed.

Mo $K\alpha$ radiation Cell parameters from 20865

reflections $\theta = 3.2-37.3^{\circ}$ $\mu = 6.75 \text{ mm}^{-1}$ T = 100 (2) KBlock, yellow $0.15 \times 0.15 \times 0.15 \text{ mm}$

 $R_{\rm int} = 0.043$

 $\begin{array}{l} \theta_{\max} = 35.0^{\circ} \\ h = -20 \rightarrow 21 \\ k = -21 \rightarrow 21 \\ l = -9 \rightarrow 11 \end{array}$

2671 independent reflections

2535 reflections with $I > 2\sigma(I)$

Crystal data

$(C_{24}H_{20}As)[ReCl_4O(H_2O)]$
$M_r = 745.34$
Tetragonal, $P4/n$
a = 13.021 (2)Å
c = 7.236 (2) Å
V = 1226.8 (4) Å ³
Z = 2
$D_x = 2.018 \text{ Mg m}^{-3}$

Data collection

Kuma KM-4-CCD κ -geometry
diffractometer
ω scans
Absorption correction: numerical
(CrysAlis RED; Oxford
Diffraction, 2003)
$T_{\min} = 0.562, \ T_{\max} = 0.686$
19131 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0156P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.018$	+ 0.8991P]
$wR(F^2) = 0.039$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.002$
2671 reflections	$\Delta \rho_{\rm max} = 1.52 \text{ e} \text{ Å}^{-3}$
76 parameters	$\Delta \rho_{\rm min} = -0.98 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Re-O1	1.662 (2)	Re-Cl	2.3479 (5)
Re-O2	2.325 (3)	As-C1	1.907 (2)
$O1$ P_2 Cl	100.18 (1)	Cl ^{iv} As Cl	106 21 (0)
UI-Re-Ci	100.18 (1)	CI -As-CI	100.51 (9)
Cl-Re-Cl ¹	88.21 (1)	C1 ^v -As-C1	111.08 (5)
Symmetry codes: (i) y	$x, \frac{1}{2} - x, z;$ (iv) $\frac{1}{2} - x, \frac{3}{2}$	$-y, z; (v) -\frac{1}{2} + y, 1 - x, -$	-z.

All H atoms were found in a difference map, but during the final refinement they were treated in a riding-model approximation, with C-H = 0.95 Å and O-H = 0.84 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$. The occupation factor for the water H atom was fixed at

Figure 1

A view of the title complex, showing the atom-numbering scheme and disorder of the aqua ligand. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) $y, \frac{1}{2} - x, z$; (iv) $\frac{1}{2} - x, \frac{3}{2} - y, z$; (v) $-\frac{1}{2} + y, 1 - x, -z$; (vi) $1 - y, \frac{1}{2} + x, -z$.]

0.5 as it is disordered over four symmetry-equivalent positions. The highest peak in the final difference map was 2.03 Å from atom C2.

Data collection: *CrysAlis CCD* (Oxford Diffraction 2003); cell refinement: *CrysAlis RED* (Oxford Diffraction 2003); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXL97*.

References

- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dean, P. A. W., Craig, D. C., Scudder, M. L. & Dance, I. G. (2003). Acta Cryst. C59, m484-m486.
- Linden, A. & James, B. D. (2002). Acta Cryst. C58, m439-m440.
- Lis, T. (1979). Acta Cryst. B35, 3041-3044.
- Lis, T. & Jeżowska-Trzebiatowska, B. (1977). Acta Cryst. B33, 1248-1250.
- Müller, U. Von (1984). Acta Cryst. C40, 571-572.
- Oxford Diffraction (2003). *CrysAlis RED* and *CrysAlis CCD*. Versions 1.171. Oxford Diffraction Ltd, Wrocław, Poland.
- Sergienko, V. S., Minacheva, L. Kh., Ashurova, N. Kh., Porai-Koshits, M. A., Yakubov, K. G. & Sakharova, V. G. (1991). *Zh. Neorg. Khim.* 36, 381–392. (In Russian.)
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.